הוכח: זווית היקפית במעגל הנשענת על קוטר שווה ל- 90 מעלות

זוית היקפית C נשענת על הקוטר במעגל O
זוית היקפית C נשענת על הקוטר במעגל O
הוכח: זווית היקפית הנשענת על קוטר שווה ל- 90 מעלות

נתון:
מעגל שמרכזו בנקודה O
AB - קוטר המעגל
C נקודה על היקף המעגל

צריך להוכיח:



הוכחה:

בניית עזר - רדיוס לקודקוד C של בזוית ההיקפית ACB
בניית עזר - רדיוס לקודקוד C של בזוית ההיקפית ACB
בניית עזר:
נבנה רדיוס לקודקוד C של הזווית ההיקפית ACB. קיבלנו שני משולשים שווי שוקיים, ולפי משפט זוויות הבסיס שלהם שוות. סכום הזויות הבסיס הוא 180 מעלות (סכום זויות משולש ABC) וסכום מחציתן 90 מעלות (זוית C מה שנתבקשנו להוכיח).


OC = OB רדיוסים במעגל O שווים
לכן:     -  במשולש שווה שוקיים - מול צלעות שוות מונחות זויות שוות

 OC = OA רדיוסים במעגל O שווים
 לכן:    -   במשולש שווה שוקיים - מול צלעות שוות מונחות זויות שוות


    - סכום זויות במשולש (ABC) הוא 180 מעלות

לכן:

ולכן:

מ.ש.ל

אין תגובות:

הוסף רשומת תגובה