פתרון שאלה 4 - בגרות מתמטיקה 3 יח' - חורף 2016 - חקירת פונקציה פולינומית ממעלה שלישית

מתוך בגרות מתמטיקה 3 יח' - חורף 2016 

שאלה 4

 


פתרון שאלה 4

 א. מציאת נקודות קיצון

ערך הנגזרת של פונקציה בנקודת הקיצון שלה הוא 0. לכן נגזור את הפונקציה ונשווה לאפס.


נשווה את הנגזרת ל- 0 ונפתור:

קיבלנו שלפונקציה ערכי קיצון בנקודות x1 = 3 , x2=3, נחשב את ערכי הפונציה בנקודות אלו.

עבור x1 =3


נקודת הקיצון הראשונה היא בנקודה: (3,0)

עבור x2 = 1


נקודת הקיצון השניה היא בנקודה: (1,4)

ע"פ הסקיצה נקודת קיצון (1,4) היא נקודת מקסימום, ונקודת קיצון (3,0)  היא נקודת מינימום



ב. (1). משוואת הישר העובר דרך ראשית הצירים ונקודה A


הישר עובר דרך 2 נקודות: ראשית הצירים (0,0) ונקודה A (1,4)

מציאת שיפוע m של ישר העובר דרך שתי נקודות
השיפוע m נתון בנוסחה: 
לכן שיפוע הישר העובר דרך ראשית הצירים ונקודה A הוא: (1-0)/(4-0) = 4/1 = 4
משוואת הישר בעל שיפוע m העובר דרך נקודה     היא:
 
לכן משוואת הישר ששיפועו 4 ועובר דרך הראשית (0,0) היא: y-0 = 4(x-0) או y=4x.

משוואת הישר היא y=4x

ב.2 - שטח מוגבל ע"י גרף הפונקציה

נדרש לחשב את השטח המוגבל בין גרף הפונקציה הנתונה לישר y=4x בתחום   x = 0, -1
נחשב את השטח המוגבל בתחום של הפונקציה וציר x ע"י אינטגרציה ונפחית את השטח המוגל בין הישר y=4x בתחום לציר x/

חישוב השטח המוגבל של הפונקציה בתחום x= 0, -1 לציר x:


השטח יצא שלילי מבחינה מתמטית מאחר והוא ממוקם מתחת לציר x נתייחס אליו כחיובי כלומר השטח הוא 2.75 יחידות בריבוע

חישוב השטח המוגבל של הישר y=4x בתחום x= 0, -1 לציר x:
 
השטח המוגבל בין הישר y=4x  לציר x בתחום x = 0, -1 הוא 2 יחידות בריבוע.

לכן השטח הנדרש בשאלה הוא


השטח המוגבל בין גרף הפונקציה הנתונה לישר y=4x בתחום   x = 0, -1 הוא: 0.75 יחידות בריבוע.

אין תגובות:

הוסף רשומת תגובה