שאלה 21
לפניכם שרטוט של מחומש ABCDE המורכב מריבוע ABDE וממשולש ישר-זווית BCD.
א. מה שטח הריבוע ABDE? הציגו את דרך הפתרון:
לפניכם שרטוט של מחומש ABCDE המורכב מריבוע ABDE וממשולש ישר-זווית BCD.
מבחן מיצב כיתה ח - מחומש מורכב מריבוע ומשולש ישר זווית |
א. מה שטח הריבוע ABDE? הציגו את דרך הפתרון:
פתרון סעיף א
נמצא תחילה את אורך צלע BD של הריבוע ABDE, ע"פ משפט פיתגורס.
משולש BCD ישר זוית (זוית C ישרה) לכן סכום ריבועי הניצבים BC, ו- CD שווה לריבוע היתר BD:
BD² = BC² + CD²
או בהצבה ופתרון:
BD² = 7² + 5²
BD² = 49 + 25 = 74
BD = √74
שטח ריבוע שווה לריבוע צלע מצלעותיו השוות, בעצמה:
שטח הריבוע : S = BD² = 74
ב. מה שטח המחומש ABCDE? הציגו את דרך הפתרון:
פתרון סעיף ב
שטח המחומש ABCDE מורכב משטח הריבוע ABDE ושטח המשולש ישר הזוית BCD. נמצא את שטח הריבוע ושטח המשולש, נחבר אותם, ונקבל את שטח המחומש.
שטח ריבוע ABDE -מצאנו בסעיף א: S = BD² = 74
שטח המשולש BCD - שטח משולש שווה למחצית מכפלת צלע בגובה לאותה הצלע. כאשר המשולש ישר זוית, הניצבים מהווים צלעות וגבהים אחד לשני, לכן שטח משולש ישר זוית שווה למחצית מכפלת ניצביו.
ב. מה שטח המחומש ABCDE? הציגו את דרך הפתרון:
פתרון סעיף ב
שטח המחומש ABCDE מורכב משטח הריבוע ABDE ושטח המשולש ישר הזוית BCD. נמצא את שטח הריבוע ושטח המשולש, נחבר אותם, ונקבל את שטח המחומש.
שטח ריבוע ABDE -מצאנו בסעיף א: S = BD² = 74
שטח המשולש BCD - שטח משולש שווה למחצית מכפלת צלע בגובה לאותה הצלע. כאשר המשולש ישר זוית, הניצבים מהווים צלעות וגבהים אחד לשני, לכן שטח משולש ישר זוית שווה למחצית מכפלת ניצביו.
שטח משולש BCD:
SBCD = ½ ᐧ BC ᐧ CD = ½ ᐧ 7 ᐧ 5 = 17.5
שטח המחומש ABCDE הוא סכום שטח הריבוע ושטח המשולש: 91.5 = 74 + 17.5
ג. מה היקף המחומש ABCDE?
פתרון סעיף ג
היקף המחומש P שווה לסכום אורכי צלעותיו:
ג. מה היקף המחומש ABCDE?
פתרון סעיף ג
היקף המחומש P שווה לסכום אורכי צלעותיו:
P = AB + BC + CD + DE + AE
P = √74 + 7 + 5 + √74 + √74
P = 3√74 + 12
אין תגובות:
הוסף רשומת תגובה